One paper out, a new exciting Raman spin-off project just launched

About two years ago, at the height of the Covid pandemic, the idea was born to initiate a scientific cooperation with our colleagues Fabian Dellefant and Melanie Kaliwoda from the Department of Earth and Environmental Sciences of the LMU and test together a new analytical methodology for archaeological ceramic material, namely Raman Spectroscopy.

Specifically, we aimed to first perform Raman spectroscopy towards carbon-bearing pottery and yields insights on the application of this technique for estimating maximum firing temperatures of Late Bronze Age vessels from Upper Nubia, comparing two site-specific data sets of samples, from the 18th Dynasty (1550–1290 BCE) at Sai Island and Dukki Gel (Kerma).

The encounter between natural sciences and archaeology was successful and from this idea an inspiring project developed, culminating in the publication of the paper: “Differentiation of Late Bronze Age Nubian- and Egyptian-style ceramics from northern Sudan by manufacturing firing temperatures using Raman spectroscopy”, in Journal of Archaeological Science: Reports, as part of the Special Issue Materiality of Earth edited by Pamela Fragnoli, Elisa Boccalon, Susanna Cereda, and Giovanna Liberotti, whom we all deeply thank for inviting us to contribute to this SI.

In testing Raman spectroscopy, our principal aims were to search for differences in producing technique and firing temperatures between the Nubian- and Egyptian-style samples; between the samples from Sai Island and those from Dukki Gel; and eventually among the different ceramic wares and types.

Now, as it is often the case, one idea leads to another and while some of the archaeological questions posed in the initial objectives of the work have not yet been fully answered, new exciting questions have arisen during the research and led us to further expand our Raman project into a new spin-off project focused on the investigation of the effects of oxidative weathering in relation to site-specific depositional environment and time.

Generally speaking, oxidative weathering is known to cause significant alteration modifications of the ceramic body after deposition resulting in distorting Raman spectra and potentially leading to an overestimation of the firing temperatures (Deldicque et al., 2023). Although all archaeological ceramics experienced oxidative weathering, our case study showed that the weathering effect was possibly more intense on the Dukki Gel than on the Sai Island samples hence to affect maximum firing conditions.

The new set of samples for which thin-sections were produced to perform Raman Spectroscopy.

In the coming months, together with Fabian Dellefant, we will particularly focus on this aspect of our research and perform Raman Spectroscopy on new samples, including ceramic sherds that have undergone extremely intensive oxidative weathering and experimental replica which were never exposed to any depositional and post-depositional processes.

Stay tuned to know more about the development of our work!

Reference

Deldicque, D., Rouzaud, J., Vandevelde, S., Medina-Alcaide, M.A., Ferrier, C., Perrenoud, C., Pozzi, J., Cabanis, M., 2023. Effects of oxidative weathering on Raman spectra of charcoal and bone chars: consequences in archaeology and paleothermometry. Comptes Rendus. Geoscience 355, 1–22. https://doi.org/ 10.5802/crgeos.186.

Update on Raman Spectroscopy analysis on Nubian and Egyptian style samples

At the beginning of June, we have announced the launch of a new pilot study – as part of the WP 3 of the DiverseNile project – implementing and testing the potential of the Raman Spectroscopy technique on a selection of ceramic samples coming from our reference collection from the sites of Sai Island (SAV/S-samples) and Dukki Gel, Kerma (DG-samples).

This study is currently in progress as part of our cooperation with the Department of Earth and Environmental Sciences of the LMU, and namely with Fabian Dellefant, co-author of this post, who is a geoscientist and doctoral student under the supervisors of Prof. Dr. Trepmann and Prof. Dr. Gilder.

Due to fast measurements and its non-destructive approach with only little sample preparation, Raman spectroscopy can be easily applied to ancient ceramic materials, answering various technological questions, in particular on the manufacturing stages of production and firing of the pots.

For our investigation, we analysed so far a total number of 8 samples/thin sections (namely samples DG-18, DG-23, DG-29, DG-35, SAV/S 02, SAV/S 14, SAV/S 17, and SAV/S 51). Of all these, micro photos were primarily taken under the petrographic microscope with both transmitted and reflected light in order to select the areas of the sample to be examined with Raman Spectroscopy (normally two different spots including the clay matrix and particular organic components, both within the inner portion or core of the sample and on the rim area).

These samples are either locally produced cooking pots or other local ware manufactured both according to the so-called Nubian (DG-18, DG-23, DG-29, and SAV/S 02) and Egyptian style (DG-35, SAV/S 14, SAV/S 17, and SAV/S 51).  All of them consist of a non-calcareous optically active clay matrix with dark cores and red or buff oxidised surfaces. In some specimens, the oxidised margins are narrow and well defined, while in others the red-black zonation appears larger and less regular. The Egyptian style samples normally show a kind of “sandwich” structure consisting of a dark core enclosed, both above and below, by red oxidised surfaces (Fig. 1).

Fig. 1 Photos of the fractures from thin section scanning of samples SAV/S 02 (left) and SAV/S 17 (right). Note the large amount of organic inclusions which have been totally or partially carbonized and are surrounded by voids. Both samples show a dark core due to insufficient penetration of oxygen during firing.

All these samples contain, in a different extent, organic matter either plant remains (chaff, straw, grass and possibly various cereals components), and probably herbivore manure (those finely divided straw particles). The organics are either totally or partially carbonized so that the plant inclusions are often preserved as black carbonized relics into the voids.

The carbonaceous core (dark-grey zone in the center of the ceramic samples) can be the result of insufficient firing under oxidizing conditions. It is also related to the use of a paste of high organic component. During the firing of the pot, the combustion of the organics acts indeed as a reducing agent, taking away oxygen from the firing environment (Velde and Druc 1999: 126-127, see also Quinn 2013).

In organic chemistry, the process of thermal decomposition, obtained by the application of heat and in the complete absence of an oxidizing agent is known as pyrolysis or graphitization.

Pyrolysis-GC/MS to ceramics which are conspicuously black or exhibit a black inner core from incomplete burn-out has been applied for the assessment of molecular properties of organic matter in archaeological pottery matrix (see Kaal et al. 2013).

In Raman Spectroscopy, vibrational modes of specific crystallographic components are used to determine a specific crystallographic structure. In our case, the temperature-dependent formation of graphite is used to quantify the highest temperature the sample has experienced.

The lab setup consists of an optical microscope with different magnifications and a computer software, which handles data acquisition (Fig. 2). Measurements are conducted by using a laser with a 532 cm-1 wavelength directly on the thin section which has been first well-polished and cleaned with ethanol. In the lab, temperature is kept constant at 18° C degrees with the lights turned off so as not to interfere with the measurement.

Fig. 2 Lab of the Museum Mineralogia in Munich with the optical microscope (right) and the computer (left), which were used for the investigation.

In the investigated ceramics, the precursor of the measured graphite can be either organic material, such as grass and straw, or dung of herbivores, which was mingled into the clay before heating. Furthermore, in some samples firing ash could have been added as well. Our preliminary results show that graphite can be clearly detected in the sample material. Interestingly, a group of samples showed graphite formation only within the organic components, which is interpreted as being the relicts from plant inclusions. Other samples clearly show graphite spectra also within the clay matrix, which could have been added to the clay as ash in the first place (see e.g., SAV/S 02, Fig. 3).

Fig. 3 Optical microphotograph with reflected light of sample SAV/S 02. Datapoint 12 (pink) marks an organic component in a void and refers to the Raman spectra SAV_2_1-r12 in Fig. 4. Datapoint 22 (blue) characterizes the ceramics matrix and refers to the Raman spectra SAV_2_1-r22 in Fig. 4.
Fig. 4 Raman spectra of a datapoint from the matrix and an organic component. The spectrum of the matrix refers to datapoint 22 and the spectrum of the organic component refers to datapoint 12 of Fig. 3.

The interpretation of the maximum temperature the sample experienced is based on the ratio of two Raman peaks, which have a wavenumber of ~1390 cm-1 and 1606 cm-1. Given the dataset shown in Fig. 4, the maximum temperature can be estimated to ~600 °C after Guizani et al. 2017.

In the following weeks, we will proceed to the data processing and potential grouping based on the various Raman spectra collected from our pottery samples (we measured on average up to 20-25 datapoints for each sample). This will allow us to develop our preliminary interpretations and come to more specific conclusions on the quality of the organic material added to the paste and the heating temperatures reached during the firing. Eventually we might get insights on the type of clay sources selected to make the pots.

We can maybe spoil a bit things for you, anticipating that possibly some of the examined samples experienced a more homogeneous firing than others, these latter showing otherwise varying temperatures!

References

Guizani, C., Haddad, K., Limousy, L., and Jeguirim, M. 2017. New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis. Carbon 119:519–521. http://dx.doi.org/10.1016/j.carbon.2017.04.078.

Kaal, J., Lantes-Suárez, O., Martínez CortizasA., Prieto, B., and Prieto Martínez, M. P. 2013. How Useful is Pyrolysis-GC/MS for the Assessment of Molecular Properties of Organic Matter in Archaeological Pottery Matrix? An Exploratory Case Study from North-West Spain. Archaeometry 56 (S1): 187–207. https://doi.org/10.1111/arcm.12057.

Quinn, Patrick S. 2013 Ceramic Petrography. The Interpretation of Archaeological Pottery and Related Artefacts in Thin Section, Oxford.

Velde, Bruce and Druc, Isabelle C. 1999. Archaeological Ceramic Material. Origin and Utilization, Berlin.

New research goals at the time of Covid-19. Testing Raman Spectroscopy on Nubian and Egyptian-style pots

If there is something that the Covid-19 pandemic has taught us is resilience, work flexibility and mostly the capacity to design alternative solutions to meet the various physical restrictions and newly shaped work conditions and needs. Further, we learned the importance of networks and acquiring skills even in remote formats, and that online (and/or hybrid) classes and conferences can give virtuous outputs as those in presence.  Within the framework of our project, a successful  example of this is certainly represented by our online Diverse Nile Seminar Series 2021 Cultural Diversity in Northeast Africa.

For me operating within the Work package 3 of the project and principally dealing with laboratory analysis on the material data – ceramic samples – collected in the field, the pandemic has inevitably meant that I had to shift my main focus from the study of fresh excavation data to the study of reference collections. Hence, in the last months my work schedule has been mainly centred on documentation, database archive, and comparison among the various ceramic datasets. Also, the obligatory permanence in Germany (missing the field and the warmness of the Sudanese sun) together with the need to work often via remote or, whenever possible from the lab, pushed me to convey my working goals to search for new theoretical approaches and interpretative inputs, eventually enlarging the spectrum of the analytical competencies and methodologies devoted to the study of the ceramic samples.

In these circumstances the idea was born together with our PI and other colleagues from the Department of Earth and Environmental Sciences of the LMU to cooperate and expand the networking between our departments hence to test together a new analytical methodology for archaeological ceramic material, namely Raman Spectroscopy.

This technique, which took its unusual name after the Indian physicist C. V. Raman who was the first to observe Raman scattering in 1928 and won a Nobel Prize in Physics in 1930 for this discovery, is a molecular spectroscopy procedure which provides information about vibration and rotational states of molecules. It works using the interaction of a source of monochromatic light, normally an intensive monochromatic laser radiation, and the matter of the sample. The largest part (99.99%) of the laser light radiates through the sample, a very small proportion is scattered in all spatial directions (so-called Rayleigh scattering), finally an even smaller part is scattered inelastically (so-called Raman scattering). This latter contains information about the sample, its molecular structure (no the single chemical elements) and specific characteristics of the material (see among others, Spieß et al. 1999; also What is Raman Spectroscopy? | Raman Spectroscopy Principle (edinst.com); Raman spectroscopy – Wikipedia).

For the study of archaeological samples like ceramics, Raman spectroscopy has the advantage of being a non-destructive (only a minimum portion of the sample as the same slide of the thin section is needed), rapid and relatively low-priced technique. However, the high potential of this methodology may collide with the natural heterogeneity of most of the ancient, especially hand-made, ceramic manufactures (Medeghini et al. 2014; Vandenabeele & Van Pevenage 2017; see also Legodi & de Waal 2007). This is why, at the moment, our goal consists primarily to observe the methodological potentials of Raman and discern its use for our specific research questions.

For our trial study, we selected ten samples (of which six are ceramics from Sai Island and four from the Dukki Gel’s reference collection). All of them are either locally produced cooking pots or other local ware manufactured both according to the so-called Nubian and Egyptian style (Figure 1). In testing this new analytical technique, our main aims are the following: to search for differences in producing technique and firing temperatures/regimes 1) between the Nubian and Egyptian-style samples; 2) between the Nubian samples from Sai Island and those from Dukki Gel; 3) between the Egyptian-style samples from Sai Island and those from Dukki Gel; 4) among the different Nubian types (cooking pots with basketry impressions, incisions, and others). In addition, we also want to look at the behaviour of the organics and their carbonization and check for a possibility of a better characterisation of some opaque mineral phases.

Figure 1 – Examples of Nubian cooking pots with basketry impressions from Sai Island (left) and Dukki Gel; Kerma (right).

In the last days, together with the colleague Fabian Dellefant, geoscientist and doctoral student at the Department of Earth and Environmental Sciences of the LMU, we have realized high resolution scans of the selected ceramic thin sections and photographed them at the petrographic microscope under different light conditions (both transmitted cross polarized and plane polarized light, and also reflected light) in order to describe and document the areas which we are ultimately going to analyse by Raman.

Stay tuned to know more about our ongoing work and first results!

Selected references and links

Legodi, M. A. &, de Waal, D. 2007. Raman spectroscopic study of ancient South African domestic clay pottery, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66, Issue 1, 135-142.

Medeghini et al. 2014. Micro-Raman spectroscopy and ancient ceramics: applications and problems. Journal of Raman Spectroscopy, 45, Issue 11-12, Special Issue: Raman in Art and Archaeology 2013, 1244-1250.

Spieß, G. et al. 1999. Eine einfache Einführung in die Raman-Spektroskopie. LMU. Die quantitative Analyse (uni-muenchen.de).

Vandenabeele, P. & Van Pevenage J. 2017. Raman Spectroscopy and the Study of Ceramic Manufacture: Possibilities, Results, and Challenges. In Hunt, Al (Ed.) The Oxford Handbook of Archaeological Ceramic Analysis.

What is Raman Spectroscopy? | Raman Spectroscopy Principle (edinst.com)

First preliminary remarks on the petrography of the Dukki Gel ceramic samples

In the last few weeks I haven’t been very present in our blog since I spent much time sitting at the microscope of the Department of Earth and Environmental Sciences of the LMU, just nearby to our office, examining and documenting the first batch of ceramic samples from the site of Dukki Gel. These samples have been included as a reference collection within our DiverseNile project thanks to the kind agreement of the excavator, Charles Bonnet, and the responsible ceramicist Philippe Ruffieux. Philippe has already studied all of these samples within their context and we can now address fresh questions within the DiverseNile work packages and with scientific analysis.

In times of the Covid pandemic, the procedure to access the laboratories is rightly strict: registration is mandatory before working in the microscopy room, only a maximum of three people are allowed to work simultaneously in the lab and of course we are required to wear medical masks and disinfect all devices and workspace at the end. All this will seem obvious, but what I personally find curious is the contrast between the meticulousness of the analytical procedure, further complicated by the current Covid rules, and the simple and tangible nature of the ancient ceramics, whose immense  anthropological and material complexity, and huge archaeological interpretative potential is all enclosed in a thin section of just 30 microns thick.

In my last blog post – I introduced the method I use for the classification of the ceramic samples and the layout within the Filemaker database which I specifically designed for the purpose of the petrographic study.

So far a total of twenty-one ceramic samples from Dukki Gel has been analysed by optical microscopy (OM), while forty-three samples are currently located at the Atominstitute in Vienna where they are being analysed for instrumental Neutron Activation Analysis (iNAA) by our colleague and external expert in the project Johannes Sterba.

Most of the samples for OM (18 out of 21) are Nubian vessels among which are cooking pots (both basketry impressed and incised ware), jars, globular vessels and also fine black topped Kerma ware. Further, three Egyptian-type vessels (two red slipped bowls and one fragment of a bread mould) were analysed under the microscope.

Petrographically, the Nubian samples from Dukki Gel appear quite homogeneous in term of their composition, displaying mineralogical and textural features which also resemble very much the petrography of the Nubian samples analysed from the New Kingdom town of Sai Island (see D’Ercole and Sterba 2018; D’Ercole in prep.). Differences in the textural features, in the proportion of some specific mineral phases, and in the amount and type of the organic tempers contained in the paste allowed distinguishing four principal petrographic groups or micro fabrics. The first group is characterized by a very sandy framework with a dominant grain size in the class of silt to very fine-grained sand, a good sorting of the non-plastics and very few organics mainly small and tubular in shape. The second group also displays a sandy framework, sorting is moderate with some medium sized rounded quartz and feldspar possibly added as temper, and common tubular organics partially carbonized and moderately aligned. Group 3, to which belongs the majority of the analysed samples, is sandy, moderately sorted, with common to abundant organics, either partially or completely carbonized, heterogeneous in shape and size,  and possibly referring to various parts of plant remains (including stem, glume, palea, and lemma?) (Fig. 1) and also herbivore dung. Finally, the fourth group of Dukki Gel Nubian samples contains abundant heterogeneous organics similar to group 3 but also large carbonate inclusions of microcrystalline calcite most likely intentionally added as tempering material. To this last group, which does not show a real comparison with the material from Sai, where the presence of calcite was ubiquitous and seemed a natural component in the clay source/ soil rather than a tempering agent, refers exclusively cooking pots with basketry impressions and a single jar.

Figure 1 – Detail of organic inclusion with visible plant cell structure from Sample DG-17. PPL micropho by G. D’Ercole.

All in all, similarly to what was observed for Sai Island, the petrofacies of the Nubian ceramics is very homogeneous and points to the selection of clays, or better soils, derived from local Holocene Nile alluvia, with a composition very similar along the various sectors of the Nile river (D’Ercole and Sterba 2018). These ceramics were possibly tempered with some medium- and coarse-sized aeolian sand or with quartz grains drained by the local river systems. Technologically, the amount and type of the organic material added to the paste (more or less abundant and selected) makes the main difference and allows distinguishing among various sub-recipes or ways of doing the vessels. Further, the orientation of the voids left by the combustion of the organic matter into the paste permits to recognize among the use of different manufacturing techniques. Specifically, in the cooking pots with basketry impressions which were built on a mat, the organics appear generally well or moderately aligned with a prevalent presence of longitudinal features like stems or plant stalks (Fig. 2a). Differently, in those pots (e.g., globular pots, bowls) built with the coiling technique, the organics show mainly a poor alignment and a specific orientation that indicates the ‘relict’ coil features (Fig. 2b). The black topped and the fine polished Kerma ware generally contain less organics, these latter are also smaller in size indicating either the use of herbivore dung and/or a selection of added plant remains.

Figure 2a – Thin section scan of Sample DG-18 (Nubian cooking pot). The good alignment of the pores structures and of the voids and relicts left by the combustion of the organics indicates that this vessel was built on a mat. Image by G. D’Ercole.
Figure 2b – Thin section scan of Sample DG-17 (Nubian large bowl). The specific concentric alignment of the pores structures and of the voids and relicts left by the combustion of the organics indicates that this vessel was manufactured with the coiling technique. Image by G. D’Ercole.

Highly interesting in the sample from Dukki Gel, is the presence of a jar with a roughly polished / wet-smoothed black surface which although showing clear Nubian technological exterior features is characterized by a coarser and sandier fabric with more abundant feldspar and granitoid rock fragments resembling certain Egyptian cooking pots (Fig. 3). This sample, so far an unicum in our selection, points to an hybridization of Nubian and Egyptian traditions (this time with the intersection of some performance of ‘Egyptian’ criteria to a general Nubian technological and stylistical formula) and well supports our overall theoretical framework and working approach on the complexity and diversity among various Nubian local narrative experiences and conceptions of material culture.

Figure 3 – Sample DG-22 (Nubian jar) with roughly polished / wet-smoothed surfaces characterized by a sandy fabric rich in alkali feldspar. Photo by G. D’Ercole.

Hopefully by the end of this month, we also will have the first set of chemical data from the reference collection from Dukki Gel in our hands which we will then compare with the macroscopic evidence and with these petrographic remarks.

References

D’Ercole, G. In prep. Petrography of the pottery from the New Kingdom town of Sai, in: J. Budka, with contributions by G. D’Ercole, J. Sterba and P. Ruffieux, AcrossBorders 3: Vessels for the home away from Egypt. The pottery corpus from the New Kingdom town of Sai Island. Archaeology of Egypt, Sudan and the Levant. Vienna.

D’Ercole, G. and Sterba, J. H. 2018. From macro wares to micro fabrics and INAA compositional groups: the Pottery Corpus of the New Kingdom town on Sai Island (northern Sudan), 171–183, in: J. Budka and J. Auenmüller (eds.), From Microcosm to Macrocosm: Individual households and cities in Ancient Egypt and Nubia. Leiden.

Assessing cultural diversity in the Attab to Ferka region by means of pottery technology

Time passes by for everyone. Also, and above all for archaeologists. Still, it is pleasant when this comes with experience and new opportunities.

On February 2013 I wrote my first post for the AcrossBorders blog. At that time, I was sitting in the magazine rooms of the Sai Island excavation house starting to get familiar with the Nubian fabrics of the New Kingdom town. A few months later I moved to Vienna to join the ERC Starting Grant ‘AcrossBorders’ project led by Julia Budka.

Since then, hundreds of ceramic samples have passed through my hands. These were both Nubian-style and Egyptian-style vessels locally produced at Sai Island / Upper Nubia, but also Imported Nile clays, Marl clays and Oasis clays from Egypt, together with other imported wares from Levant. These materials constituted the aim of my research for AcrossBorders and were sampled, documented and analysed by me together with Johannes Sterba, at the Atominstitut of Vienna. Over the years, thanks to Julia Budka, I have learned how to recognize and classify these wares and fabrics and we calibrated together on them the different analytical strategies and research objectives. Now I fairly know each of those samples by heart.

Yet, we do not grow where things are easy, we grow when we face challenges (and new opportunities).

With October, I happily started in Munich a new three-year contract within Julia Budka’s ERC Consolidator Grant project ‘Diverse Nile’, where I am, together with other researchers and Julia Budka, responsible for the Work Package 3: Reconstructing cultural encounters based on the material culture. My main tasks within WP 3 include petrographic technological and compositional analyses on the ceramic materials sampled from the new concession area in the Attab to Ferka region, dating to the Bronze Age.

Emphasis will lay on pottery technology and mostly on the so-called hybrid products and their significance for cultural encounters (see, e.g., Stockhammer 2013; Matić 2017; Beck 2018; Steel 2018; Souza 2020), on Nubian local style vessels and on the provenience of wheel-made ‘Egyptian’ pottery.

Analytical methods will comprise petrographic (OM) and provenance chemical analysis (iNAA and possibly XRF) but also digital image analysis (DIA) and scanning electron microscopy (SEM) on selected samples. Further, since the focus will lay mainly on pottery technology and manufacturing techniques, other analytical methodologies (e.g., radiography and computed tomography, CT) will be evaluated for studying the internal structures of the objects and the diversity among specific hand -made (i.e., coiling, mold-building, slab-building), wheel-made and possibly also mixed hand-made and wheel-made forming techniques (see e.g., Sanger 2016). A greater importance will be given to observe the technology of production of the vessels aimed at outlining all stages of the manufacturing processes, from raw material procurement through preparation, production, finishing, until use, and discard.

Macro and micro (PPL, 4x magnification) photos of a bread plate sample (manufactured in a local Egyptian-style Nile clay) from SAV 1 East, Sai Island. Note the very fine-grained fabric with abundant organic inclusions distributed randomly through the sample because of the hand-shaped manufacturing (technique).

From a theoretical perspective, a new challenge will be to deal with the ceramic assemblages from the periphery of the central urban sites and relate them to our reference collection from Sai Island. Were there any different strategies in the selection of raw materials, preparation of the vessels and manufacturing techniques between central and peripheral sites? Furthermore, were the proportions between local Nubian-style, Egyptian-style, and various imported vessels equal or not between core sites and periphery?

For this purpose, comparative material from other main New Kingdom/Kerma central sites in Upper Nubia will be incorporated to our principal reference collection from Sai Island.

Luckily, Covid times have not completely blocked us, and thanks to a kind agreement with our colleague and friend Philippe Ruffieux, we are currently waiting to welcome in Munich a bunch of approx. forty samples, among which typical Nubian (Kerma) and Egyptian Nile clay wares from the New Kingdom/Kerma-Dukki Gel site.

It will be a pleasure to start my new task within the DiverseNile project by documenting, sampling, and examining this highly relevant material!

References

Beck, T. 2018. Postkoloniale Objektepistemologien? Homi Bhabhas Konzepte in archäologischen Forschungen – ein Überblick, 237–262, in: M. Hilgert, H. Simon and K.P. Hofmann (eds.), Objektepistemologien. Zur Vermessung eines transdisziplinären Forschungsraums. Berlin.

Matić, U. 2017. Der dritte Raum, Hybridität und das Niltal: das epistemologische Potenzial der postkolonialen Theorie in der Ägyptologie, 93‒111, in: S. Beck, B. Backes and A. Verbovsek (eds.), Interkulturalität: Kontakt Konflikt Konzeptualisierung. Beiträge des sechsten Berliner Arbeitskreises Junge Aegyptologie (BAJA 6), 13.11.-15.11.2015. Wiesbaden.

Sanger, M.C. 2016. Investigating pottery vessel manufacturing techniques using radiographic imaging and computed tomography: Studies from the Late Archaic American Southeast, Journal of Archaeological Science: Reports 9, 586‒598.

Steel, L. 2018. Egyptianizing practices and cultural hybridity in the Southern Levant during the Late Bronze Age, Journal of Ancient Egyptian Interconnections 20, 15‒30.

Stockhammer, P.W. 2013. From Hybridity to Entanglement, from Essentialism to Practice, Archaeological Review from Cambridge Issue 28.1: Archaeology and Cultural Mixing, 11‒28.

Souza, A. M. de. 2010. Melting Pots: Entanglement, Appropriation, Hybridity, and Assertive Objects between the Pan-Grave and Egyptian Ceramic Traditions, Journal of Ancient Egyptian Interconnections 27, 1‒23.